High Definition Survey Analysis (HDSA™)

Current conventional industry Multi-Station Analysis (MSA) focuses on the reduction of systematic error due to bottom hole assembly magnetic interference. This is reflected in the ISCWSA error model terms (table 1). The ISCWSA error model is a suggested generic performance framework and only addressed traditional survey correction methodology (MSA). It does not consider accelerometer scale and bias error.

Term		Error	no correction	MSA	(Inches	Error
Code	Description	Туре	Magnitude	Magnitude	UNITS	Propergation
ABXY-TI15	MWD TF Ind: X and Y Accelerometer Bias	Sensor	0.004	0.004	m/s2	Sytematic
A BXY-TI 25	MWD TF Ind: X and Y Accelerometer Bias	Sensor	0.004	0.004	m/s2	Syste matic
ABZ	MWD: Z-Accelerometer Bias	Sensor	0.004	0.004	m/s2	Systematic
ASXY-TI15	MWD TF Ind: X and Y Accelerometer Scale Factor	Sensor	0.0005	0.0005	-	Syste matic
A SXY-TI25	MWD TF Ind: X and Y Accelerometer Scale Factor	Sensor	0.0005	0.0005	-	Syste matic
A SXY-TI3S	MWD TF Ind: X and Y Accelerometer Scale Factor	Sensor	0.0005	0.0005	-	Systematic
ASZ	MWD: Z-Accelerometer Scale Factor	Sensor	0.0005	0.0005	×	Syste matic
MBXY-TI19	MWD TF Ind: X and Y Magnetometer Bias	Sensor	70	35	nT	Syste matic
MBXY-TI25	MWD TF Ind: X and Y Magnetometer Bias	Sensor	70	35	nT	Syste matic
MBZ	MWD: Z-Magnetometer Bias	Sensor	70	35	nT	Syste matic
MSXY-TI15	MWD TF Ind: X and Y Magnetometer Scale Factor	Sensor	0.0016	0.0008		5yste matic
MSXY-TI25	MWD TF Ind: X and Y Magnetometer Scale Factor	Sensor	0.0016	0.0008		Syste matic
MSXY-TI35	MWD TF Ind: X and Y Magnetometer Scale Factor	Sensor	0.0016	0.0008	1	Syste matic
MSZ	MWD: Z-Magnetometer Scale Factor	Sensor	0.0016	0.0008	11	Syste matic

roundLAB) inc

Table 1: OWSG Revision 2 MWD vs MWD+MS tool code all magnitude in 1σ

roundLAB's High Definition Survey Analysis (HDSA[™]) method is the next generation in survey corrections. HDSA[™] utilizes a proprietary algorithm to correct accelerometer bias and scale factor terms to further reduce survey error. The HDSA algorithm combines magnetic systematic interference analysis with accelerometer analysis to greatly improve confidence of survey data (figure 1). The application of HDSA allows for improved wellbore placement, better separation factors for anti-collision and tightening of geologic targets.

Figure 1: Ellipse reduction using roundLAB HDSA**

HDSA[™] Benefits

- ✓ Reduces accelerometer error
- ✓ Improves TVD measurement
- ✓ Tighter geologic targets
- ✓ More accurate well placement
- ✓ Significant EOU reduction

Contact roundLAB to learn how to implement our HDSA service into your operations.

*Data parameters: 100 sample wells using Japan Aviation Electronics survey sensor packages at 2 σ confidence. **Figure 1 EOU depicts well drilling North-west with total depth of ~19,000ft and ~7200ft TVD at 2 σ confidence

907.244.9117 pwalker@roundlabinc.com @roundlab